Top 10 Statistical Tools Used in Medical Research

0

Kolabtree estadístico autónomo Kingsley Ukwuoma writes about the top statistical tools used in medical investigación y clínica análisis de datos

Hubo un tiempo en el que la validación de los experimentos a través de los datos se realizaba íntegramente mediante cálculos manuales. Esto abría brechas para el error humano y un mayor coste en la realización de la investigación, especialmente cuando los datos eran grandes, por ejemplo, más de 1000 observaciones de campo. Hoy en día, debido al avance gradual de la tecnología, las herramientas estadísticas se utilizan en la investigación médica para lograr una mayor eficiencia y precisión.

In the medical research field, stretching from systematic reviews, meta-analysis and ensayos clínicos, exactness and precision is paramount. Validation parameters must be more stringent. In testing research hypothesis, the assumption is based on 100% correctness. However, since data in itself is never normally distributed or perfect, it becomes important to apportion a percentage of 0.01 (1%) as the level of significance or margin of error or probability that the result will produce an error, though slight but gets better as the benchmark approaches 100%, in other words, 0.001 (0.1%) or 0.0001 (0.01%).

Los datos en sí mismos, que consisten en una mezcla de puntos numéricos, de cadena y alfanuméricos, pueden parecer intimidantes, pero el análisis de los datos no tiene por qué ser siempre complejo. El proceso puede dividirse en tres pasos claros:

-Comprender el origen de los datos, a través de los objetivos de la investigación
-Qué hacer con los datos (elección de la prueba de estimación)
-Cómo dar sentido a los datos (interpretación de los resultados)

Existe un amplio universo de herramientas estadísticas utilizadas en la investigación médica. Estas herramientas realizan el trabajo de forma similar, pero las diferencias radican en la facilidad de uso y presentación, así como en las diferencias de licencia (propietaria o no), la interfaz (apuntar y hacer clic o línea de comandos) y el coste (gratuito o de pago). Estas herramientas se encargan de los procesos integrales de recogida, organización, análisis e interpretación de datos estadísticos. Veamos las 10 principales herramientas estadísticas utilizadas en la investigación médica por científicos, médicos y profesionales de I+D de la industria.

1. Stata

Stata is a complete toolbox that provides a data management capability, data analysis and a colorful graphical interface. Stata can be termed as the policy statistical software common to institutions, including international organizations like the United Nations, governments and academicians for Salud pública, Economía, Social Work and Medicine. It remains the most powerful software available in the analytics space. The name Stata is a syllabic abbreviation of the words estadísticas and data and was released in 1985 and then the graphical user interface option in 2003.

Las características de Stata incluyen, la interfaz gráfica de usuario (GUI) o simplemente, la interfaz de apuntar y hacer clic acompañada de una opción para la interfaz de línea de comandos (CLI) que es rápida, auténtica y fácil de usar. STATA es compatible con Excel (.xls, .xlsx), Archivos de texto (.txt, .csv, .dat), SAS (.XPT) y Otros (.XML).

Hay una gran cantidad de funciones estadísticas, que van desde el análisis descriptivo, el análisis de tabulación cruzada hasta técnicas más avanzadas como el modelado de ecuaciones estructurales, los modelos de probabilidad, el análisis de supervivencia, las series temporales y los modelos multinivel. Stata permite a los usuarios tener control sobre los datos, las variables y también la compilación estadística de grupos. Stata funciona bien con datos longitudinales, pero sólo puede mantener un conjunto de datos en la memoria, que tiene que reescribirse para añadir o acceder a un nuevo conjunto de datos. Los gráficos de Stata no son tan flexibles en comparación con otros programas y los diferentes paquetes limitan el tamaño de los conjuntos de datos utilizables (Stata/IC, Stata/SE y Stata/MP).

2. R

R es un herramienta de software estadístico de código abierto that is well equipped to handle, visualization, analysis and aspects of aprendizaje automático ‘heavy computing’ and it’s strictly a programming ‘command line interface (CLI) software tool though relatively new in the user space, R now commands a strong fan base, boasting over 6000 packages, contributed by data scientists, bioinformatics and medical researchers, covering an expanse of disciplines from cancer research, clinical analysis, biología molecular, phylogeny, to meta-analysis.

El Entorno de Desarrollo Integrado (IDE) de R-studio, que alberga las herramientas de R, funciona como el motor de base de datos de Oracle, donde se utiliza SQL. La versión anterior fue lanzada en 1993 y el IDE lanzado en 2011. R es compatible con archivos de Excel (.xls, .xlsx), archivos de texto (.txt, .dat, .csv), SPSS (.sav), Stata (.dta), SAS (. sas7bdat), Otros (. xml, json). R interactúa bien con otros programas informáticos con una curva de aprendizaje bastante pronunciada, dados los diferentes tipos de datos.

Específicamente, Metafor es uno de los muchos paquetes de R disponibles para realizar meta-análisis y contiene las herramientas de análisis más completas. Su sitio web contiene algunos ejemplos de análisis y gráficos muy útiles con el código correspondiente. Sin embargo, dado que el paquete requiere el uso del entorno R, puede ser difícil para aquellos que nunca han utilizado R antes acostumbrarse al paquete tan rápidamente. Merece la pena mencionar el JASP o Jamovi paquetes.

3. Prisma de GraphPad

GraphPad Prism es popular entre los biólogos del mundo académico y de la industria. También viene con funcionalidades que permiten a los investigadores realizar investigaciones de laboratorio y pruebas de ensayos clínicos utilizando la prueba t, ANOVA unidireccional, tabla de contingencia, análisis de supervivencia y modelos de probabilidad como el modelo de regresión logística.

El software, a diferencia de cualquier otro, viene con una página de análisis de resultados interpretada después de que se hayan producido las estimaciones. El lenguaje es fácil de entender y con menos tecnicismos. El software también tiene una función automatizada incorporada que combina el análisis y el resultado gráfico en una sola instantánea, lo que se suma al comportamiento propio del reanálisis automático de los datos en caso de que se altere alguno de los puntos de datos, todo ello en tiempo de ejecución sin necesidad de rehacer el análisis realizado o el gráfico dibujado.

La herramienta de software es compatible con archivos de Excel (.xls, .xlsx), archivos de texto (.txt, .dat, .csv) y otros (. xml, json). Las características de los gráficos son excepcionales.

Lea también: Cómo los estadísticos autónomos pueden mejorar la investigación

4. SAS

SAS es la base de la analítica avanzada, con funcionalidades que abarcan una amplia gama de empresas y organizaciones científicas y de ingeniería. El desarrollo de SAS (Statistical Analysis System) comenzó en 1966 de la mano de Anthony Bar, de la Universidad Estatal de Carolina del Norte, al que se unió posteriormente James Goodnight. El Instituto Nacional de Salud financió este proyecto con el objetivo de analizar los datos agrícolas para mejorar el rendimiento de las cosechas.

SAS es compatible con archivos Excel (.xls), archivos ext (.txt, .dat, .csv), IBM SPSS (.sav), Stata (.dta), JMP (.jmp) y otras extensiones de archivo (.xml). Esto permite importar y exportar datos con facilidad, sin tener que recurrir a procesos manuales que pueden dar lugar a errores. SAS también cuenta con una buena interfaz gráfica interactiva. Sin embargo, SAS puede ser engorroso a veces para crear gráficos perfectos con la sintaxis.

LEER TAMBIÉN  How a Freelance Expert Can Enhance Statistical Analysis and Visualization for Pre-Clinical Study Reports

Some of the down features or benefits of SAS is linked to its size and proprietary license ownership. Key among this, is the time to implementation of new ideas and methods and the technicalities in the documentation process. SAS has gained popularity among Financial Services, Government, Manufacturing and Health and Ciencias de la vida.

5. IBM SPSS

La versión inicial de SPSS se desarrolló en 1968 hasta la adquisición de IBM en 2009. IBM SPSS es bastante completo y sirve como herramienta para casi todas las disciplinas y profesionales. El software tiene una gran capacidad con una función de interfaz gráfica de usuario fácil de usar. Sin embargo, el software funciona mejor para los investigadores que tienen conocimientos básicos de estadística, especialmente de elementos de datos como la medición de datos, la identificación de tipos de datos, la asignación y codificación de variables y la selección de casos.

IBM SPSS es compatible con archivos de Excel (.xls, .xlsx), archivos de texto (.csv, .txt, .dat), SAS (. sas7bdat) y Stata (.dta). Viene con una característica sorprendente en 'Chart Builder' que permite a los usuarios arrastrar y soltar gráficos y hacer modificaciones. Además de la facilidad de uso y la capacidad de manejar automáticamente los puntos de datos perdidos, los usuarios pueden realizar modelos de ecuaciones estructurales a través de SPSS Amos.

Sin embargo, algunos métodos estadísticos robustos y complejos no pueden estimarse, por ejemplo, la regresión de la mínima desviación absoluta y la regresión cuantil.

6. MATLAB

MATLAB (The Mathworks) was released in 1984. MATLAB is a complete command line interface (CLI) or programming language used by scientist and engineers. As with R, the learning path is steep, and you will be required to create your own code at some point. A plentiful number of toolboxes are also available to help answer your research questions (such as EEGLab for analysing EEG data). The difficult to use feature is complemented by a vast array of statistical methods and flexibility in terms of what the software can handle. MATLAB gained popularity among scientist in the areas of engineering, numerical analysis, linear algebra and image processing.

MATLAB is compatible with Excel files (.xls, .xlsx), Text files (.txt, .dat, .csv), Other (. xml, json). MATLAB has a good graphic and integrates easily with high-end programming software like Python and C++ but does not boast the huge statistical methods that is available for SAS and IBM SPSS.

Además, hay una lista de herramientas de software estadístico poco populares que se distinguen por su facilidad de uso, con funciones eficaces de apuntar y hacer clic.

7. JMP

JMP combines powerful statistics with dynamic graphics, in memory and on the desktop. Its interactive and visual paradigm enables JMP to reveal insights that are impossible to gain from raw tables of numbers or static graphs. Originally stood for ‘John’s Macintosh Program’ with five bespoke products: JMP, JMP Pro, JMP Clinical, JMP Genómica and JMP Graph Builder App.

JMP es compatible con archivos de Excel (.xls, .xlsx), archivos de texto (.csv, .txt, .dat), SAS (.sas7bdat), Stata (.dta), SPSS (.sav). JMP viene con un gráfico interactivo, tablas de datos enlazadas dinámicamente y un lenguaje de scripting y también tiene una interfaz que permite el uso de complementos de R y Excel, Los usuarios también obtienen los beneficios añadidos de la gestión de la salida de forma efectiva. Al igual que IBM SPSS, algunos métodos robustos esenciales: regresión; mínimos cuadrados en dos etapas (2SLS), LAD, Quantile están ausentes.

8. Minitab

Minitab ofrece una gama de herramientas estadísticas tanto básicas como bastante avanzadas para el análisis de datos y fue desarrollado en 1972 a partir de OMNITAB 80, que es una versión ligera. Al igual que GraphPad Prism, los comandos pueden ejecutarse tanto a través de la interfaz gráfica de usuario como de los comandos de script, lo que lo hace accesible tanto a los principiantes como a los usuarios que buscan realizar análisis más complejos.

El software es compatible con archivos Excel (.xls), archivos ext (.txt, .dat, .csv), IBM SPSS (.sav), Stata (.dta), JMP (.jmp) y otras extensiones de archivo (.xml). Esto permite importar y exportar datos con facilidad, sin recurrir a procesos manuales que pueden dar lugar a errores. Minitab automatiza los cálculos y permite la creación eficiente de gráficos.

9. Estadística

Statistica is a suite of analytical software tool originally developed by StatSoft and acquired by Dell in 2014 and TIBCO entering agreement to buy in 2017. Statistica is great with data management, analysis, visualization, data mining and machine learning.

SAS es compatible con archivos Excel (.xls), archivos ext (.txt, .dat, .csv), IBM SPSS (.sav), Stata (.dta), JMP (.jmp) y otras extensiones de archivo (.xml). Esto permite importar y exportar datos con facilidad, sin recurrir a procesos manuales que pueden dar lugar a errores. Statistica permite la integración del entorno de programación R en el que se dispone de técnicas analíticas adicionales.

10. Excel

Microsoft Office Excel se desarrolló originalmente para la gestión de datos. Sin necesidad de introducción, Microsoft Corp Excel se utiliza ampliamente en el análisis estadístico por el conjunto de datos tomados para esta revisión. El programa tiene un alcance más amplio y el conocimiento de su uso está bastante extendido, por lo que la cantidad de desconocimiento sobre la forma de uso es muy reducida y, por lo tanto, la facilidad de uso es la más alta entre el software revisado.

Excel también tiene un complemento llamado Meta-Essentials, MetaXL y MetaEasy que añade la capacidad de realizar estadísticas meta-analíticas con Excel como base.

There are several factors that affect the outcome of analysis, including sample size, data collection methods, choice of test used, methodology, and more. Statistical analysis needs to be carefully done by experts to obtain reliable results. Hiring an experienced estadístico médico autónomo o consultor de bioestadística puede ayudarle a ahorrar tiempo y energía, mientras se centra en su investigación. Conseguir que los datos de su investigación se verifiquen antes de su publicación también es esencial para que pueda comunicar su investigación al mundo con confianza. Kolabtree ofrece acceso a estadísticos autónomos con experiencia en diferentes programas y herramientas. Ver expertos ahora o simplemente publicar un proyecto y obtener presupuestos en 24 horas.

 


Kolabtree helps businesses worldwide hire freelance scientists and industry experts on demand. Our freelancers have helped companies publish research papers, develop products, analyze data, and more. It only takes a minute to tell us what you need done and get quotes from experts for free.


Unlock Corporate Benefits

• Secure Payment Assistance
• Onboarding Support
• Dedicated Account Manager

Sign up with your professional email to avail special advances offered against purchase orders, seamless multi-channel payments, and extended support for agreements.


Comparte.

Sobre el autor

Ramya Sriram gestiona los contenidos digitales y las comunicaciones en Kolabtree (kolabtree.com), la mayor plataforma de trabajo autónomo para científicos del mundo. Cuenta con más de una década de experiencia en edición, publicidad y creación de contenidos digitales.

Dejar una respuesta