4 Avances recientes en biología computacional

0

Biología computacional está evolucionando rápidamente con la llegada de las nuevas tecnologías, especialmente en la forma de recoger, analizar y visualizar los datos. El Dr. Ragothaman Yennmalli, un Kolabtree independiente y científico, examina cuatro avances prometedores.  

En el marco del seguimiento de la anterior entrada introductoria, here I will highlight some of the recent trends or recent advances in the biological sciences that are transforming computational biology. These advances rely heavily on computational tools and methods — big análisis de datos, multiscale modelling, etc. Some of them are listed below.

1. Los grandes datos

This is a well known term in computer science and has been picked by biologists only recently. Thanks to the next generation sequencing techniques, the sequence of a genome can be obtained in relatively shorter time. For example, the relevance of generating data quickly is magnified when working with metagenomic data or a microbiome. How can one manage the data? What about storage for long term? What are the tools for analyzing such massive data? These questions arise and they  do have answers. As mentioned this is a recent trend in biology but not in computer science or experimental físicadonde el manejo y el análisis de big data es un trabajo rutinario.

big-data-1667184_1280
One particular instance where investigación is happening is in the file formats of biological big data. In the case of protein structure file format, the current standard is the .pdb format, a column dependent format that is parseable and both human and machine readable. However, this format fails when describing mega structures, such as the ribosome or full viral capsids. Hence, a new format has been proposed called the .pdbx format that overcomes the previous format’s limitations. There is also another format called MMTF format that spees up the loading time for structures with more then 20 million atoms within seconds.

Más información sobre big data en informática biología estructural:
http://science.sciencemag.org/content/355/6322/248

2. Técnicas de crio-EM y XFEL

Estos dos métodos no son nuevos, como tales. Sin embargo, la tecnología actual y los avances que se están produciendo en estos dos campos están ampliando los límites del análisis de la estructura biomolecular. Cryo-EM es una técnica que permite captar la estructura tridimensional de la biomolécula mediante un microscopio electrónico de alta resolución. En uno de los laboratorios pioneros de los NIH se resolvió una estructura de 2,5Å. Esta resolución suele obtenerse con la estructura cristalina de las proteínas, lo que habitualmente implica al menos 1 ó 2 meses de tiempo para estandarizar el cristal óptimo que se dispara bajo el haz de rayos X.

alat2-872522_1920
In contrast, a recent technique that is revolutionizing biología estructural es XFEL que consiste en disparar haces de rayos X de alta intensidad sobre microcristales de proteínas. Debido a la alta radiación, los microcristales se queman literalmente para obtener los datos. Se necesitan decenas de miles de microcristales para obtener datos de una cobertura decente. Cada imagen capturada de un microcristal tiene que ser analizada con el resto para obtener la estructura 3D de la biomolécula.

LEER TAMBIÉN  Biosimilares: Beneficios, retos y futuro

Such techniques depend heavily on automated software that use image processing algorithms and to some extent aprendizaje automático approaches to identify the signal from the surrounding noise. This es el big data, ya que la diversidad y la velocidad a la que se adquiere la información es astronómica.

3. Modelización multiescala

A diferencia de la modelización de una sola estructura biomolecular y de la extrapolación a un sistema más complejo, la modelización multiescala implica a más de 200.000 átomos y la dinámica obtenida revela interacciones de largo alcance temporal y un comportamiento complejo de los múltiples componentes (ya sean homogéneos o heterogéneos). Los datos generados a partir de estos experimentos son masivos debido al número de puntos de datos obtenidos, también debido a las múltiples ejecuciones para obtener una significación estadística.

Un caso en el que se ha utilizado la modelización multiescala es en la comprensión de la dinámica del celulosoma, una estructura compleja bacteriana formada por proteínas y enzimas heterogéneas que se adhieren a la celulosa. Los celulosomas tienen importancia industrial en el ámbito de los biocombustibles, concretamente en la producción de bioetanol.

Más información: http://www.ks.uiuc.edu/Research/biofuels/

4. Secuenciación de células individuales

En lugar de examinar varias células, la técnica más reciente consiste en aislar cada célula individual, extraer el ARN y secuenciarlo. Esta técnica reciente se llama secuenciación de ARN de una sola célula o scRNA-seq. En este artículo de Nature, en el que se habla del método y de sus ventajas, se menciona que

Es mucho más difícil manipular células individuales que grandes poblaciones, y como cada célula sólo produce una pequeña cantidad de ARN, no hay margen de error. Otro problema es el análisis de las enormes cantidades de datos resultantes, sobre todo porque las herramientas utilizadas pueden ser poco intuitivas.

Aquí se ofrece una excelente revisión del flujo de trabajo y de las herramientas para scRNA-seq: https://doi.org/10.3389/fgene.2016.00163


¿Necesita ayuda para consultar a Biólogo computacional? Contratar a un Biología computacional autónoma experto en Kolabtree. Es gratis publicar tu proyecto y obtener presupuestos.

¿Quieres consultar al Dr. Yennamalli sobre un proyecto? Ponte en contacto con él en Kolabtree aquí.

Expertos relacionados:
Contratar a un bioinformático         Contratar a un biólogo molecular      Contratar a un bioestadístico


Kolabtree helps businesses worldwide hire freelance scientists and industry experts on demand. Our freelancers have helped companies publish research papers, develop products, analyze data, and more. It only takes a minute to tell us what you need done and get quotes from experts for free.


Unlock Corporate Benefits

• Secure Payment Assistance
• Onboarding Support
• Dedicated Account Manager

Sign up with your professional email to avail special advances offered against purchase orders, seamless multi-channel payments, and extended support for agreements.


Comparte.

Sobre el autor

El Dr. Ragothaman Yennamalli se doctoró en Biología Computacional y Bioinformática en 2008 en la Universidad Jawaharlal Nehru de Nueva Delhi. Realizó una investigación posdoctoral en la Universidad Estatal de Iowa (2009-2011), la Universidad de Wisconsin-Madison (2011-2012) y la Universidad de Rice (2012-2014). Actualmente es profesor asistente en la Universidad Jaypee de Tecnología de la Información, Waknaghat, Himachal Pradesh, India.

Dejar una respuesta