10 unverzichtbare Artikel zur Datenwissenschaft vom September 2017

0

Die Datenwissenschaft Industrie findet schnell Anwendungen in einer Vielzahl von Disziplinen, die von Biotechnologie zu Sozialwissenschaft. It’s revolutionized the way we make decisions both as businesses and researchers. Data science is currently the ‘best job in America’, according to Glassdoor. The amount of data that we collect is mind-boggling, not only through traditional ways but also through digital platforms and social media. Analyse der Daten, visualization and interpretation are skills that are in high demand — and experts often specialize in specific disciplines such as computer science or even Astrophysik. At Kolabtree, we’ve helped project owners find highly qualified freelance Data-Science-Experten um ihnen bei der Analyse eines Datensatzes oder beim Schreiben eines Algorithmus zu helfen - und das ist der Beweis dafür, dass Unternehmen in diesem Bereich unter einer Qualifikations- oder Ressourcenlücke leiden.

Datenwissenschaftler müssen sich über die neuesten Entwicklungen auf dem Laufenden halten. Forschung and developments in the field to stay on top of their game. Here is a curated list of the top 10 articles from September 2017 that we think is necessary reading.

1. Hier sind die 10 Fähigkeiten, die Sie brauchen, um Datenwissenschaftler zu werden, die Nr. 1 Job in Amerika
(Alison DeNisco, TechRepublic)

2. Der Abgrund der Analytik 
(Jon Evans, TechCrunch)

3. Neues Tool nutzt maschinelles Lernen und künstliche Intelligenz zur Verbesserung des IT-Betriebs
(Bernard Marr, Forbes)

LESEN ALSO  Sieben lesenswerte Artikel zu Data Science und Deep Learning in diesem Monat

4. Unterschied zwischen maschinellem Lernen, Datenwissenschaft, KI, Deep Learning und Statistik
(Vincent Granville, Data Science Central)

5. Ein Wikipedia für Datenvisualisierungen ist da
(Katharine Schwab, Co.Design)

6. Welche Programmiersprache sollten Sie lernen, wenn Sie Ihre Kenntnisse in der Datenanalyse verbessern wollen? [R vs. Python] (Dan Kopf, Quartz)

7. 30 wichtige Spickzettel für Datenwissenschaft, maschinelles Lernen und Deep Learning
(Matthew Mayo, KDNuggets)

8. Die KI-Studie "Gaydar" und die wahren Gefahren von Big Data
(Alan Burdick, The New Yorker)

9. Mit maschinellem Lernen den Wettbewerbsvorteil sichern
(Ronald van Loon, Dataconomy)

10. Jäger des Sturms: Die Datenwissenschaft hinter der Wettervorhersage
(George Anadiotis, ZDNet)

Haben Sie weitere Artikel, die Sie der Liste hinzufügen möchten? Hinterlassen Sie sie unten in den Kommentaren oder Tweet an uns!


Kolabtree helps businesses worldwide hire freelance scientists and industry experts on demand. Our freelancers have helped companies publish research papers, develop products, analyze data, and more. It only takes a minute to tell us what you need done and get quotes from experts for free.


Unlock Corporate Benefits

• Secure Payment Assistance
• Onboarding Support
• Dedicated Account Manager

Sign up with your professional email to avail special advances offered against purchase orders, seamless multi-channel payments, and extended support for agreements.


Teilen.

Über den Autor

Ramya Sriram ist verantwortlich für digitale Inhalte und Kommunikation bei Kolabtree (kolabtree.com), der weltweit größten Plattform für freiberufliche Wissenschaftler. Sie verfügt über mehr als ein Jahrzehnt Erfahrung in den Bereichen Verlagswesen, Werbung und Erstellung digitaler Inhalte.

Eine Antwort hinterlassen