Data is ubiquitous in assistenza sanitaria—from hospitals, laboratories and ricerca centres to surveillance systems, data makes up an indiscriminate part of healthcare systems. In fact, there is a myriad of types of data in biosciences research collected through clinical research or generated by genome sequencing or computational drug modelling. Ricerca sul cancro in particular benefits from the applications of big data and analytics. Cancer screening programs initiate rich repertoires of imaging and laboratory data, which require in-depth analysis and repeated testing in order for real value to be derived from it. Repeated testing and analisi dei dati enable clinical researchers to develop better drugs, understand their attributes in vivo e produrre nuovi tipi di farmaci per affrontare il cancro.
It’s no secret that grandi dati è considerato come il metodo sicuro per rompere la complessità del cancro. C'è l'urgenza di stabilire nuovi meccanismi per trattare il cancro, il che ha portato le aziende a studiare strumenti di visualizzazione/analisi dei dati. Catturare, raccogliere, memorizzare e analizzare i dati delle cellule tumorali è un gioco completamente nuovo in cui IA benevola, 10X Genomica, Medicina Insilico e NuMedii hanno raggiunto le loro prime pietre miliari. In fact, 10X Genomics has gone the extra mile to provide whole genome sequencing, exome sequencing and single cell transcriptome analysis services that vividly indicate cancer-prone gene sequences in the DNA, mRNA and polypeptide chains, respectively. Few others are utilizing broader data frameworks, novel screening mechanisms and high definition data filtering algorithms to test cancer drugs on a wide range of cellular environments.
Big data’s applicability in cancer diagnosis, experimentation and management is being hailed as the vital step towards next-level cancer research. Here are 7 ways big data is impacting cancer research.
1. Sequenziamento dei genomi tumorali degli esseri umani
Ogni cellula del nostro corpo ha lo stesso numero di cromosomi e circa lo stesso volume di DNA. Ma le cellule cancerose mostrano aberrazioni distinte nel contenuto cromosomico e nella crescita, che, se sottoposte a visualizzazione in silico, possono essere utilizzate per sfruttare le informazioni fino al livello del DNA. Questi studi di sequenziamento possono aiutare biologi cellulari, bioinformatici, biologi molecolari e nanobiotecnologi a sviluppare metodi migliori per rimuovere le anomalie cromosomiche, che possono portare a possibili percorsi terapeutici.
2. Sequenziamento ad alta velocità di campioni di pazienti
We’re in the age when personalized medicine is becoming commonplace in healthcare and cancer is the biggest scope for that progress. This push towards personalized medicine has put the onus on computational biology, the branch of biology that makes healthcare as sophisticated as it is viewed today. Professore Olivier Elemento, a Computational Medicine expert at the Cornell University highlights that as cancer cells are always changing, evolving and adapting to human environments, quicker next-generation technologies are more necessary now than ever to uncover a tumour’s genetic makeup. And the effort doesn’t just end there, mutation sequences have to be identified, segmented and processed with regards to the gene expressed.
3. Sequenziamento dei genomi di altri organismi
Il primo genoma ad essere sequenziato è stato quello di Escherichia coliun organismo unicellulare. Poi, i genomi delle piante come Arabidopsis thaliana and non-vertebrate worms, reptiles and rodents were sequenced, With every degree of complexity that these organisms carried, genome sequencing gained bigger in terms of the understanding of a single cell’s potential to control, sensitize or ward off cancerous cells. It also presented working theories behind triggers of cancer. Now, researchers are analysing real-time data from mouse/chicken hamster ovary cancer cell lines to augment or improve cancer detection methods, along with increasing the accuracies of presently available screening tests.
4. Analisi del trascrittoma per un migliore monitoraggio del cancro
Grandi database di dati di screening e sperimentali sono stati generati solo durante gli studi sul cancro nell'ultimo decennio. Questo ha aggiunto un valore cruciale per mantenere i geni marcatori che ora sono gli strumenti di prima mano per il monitoraggio degli oncogeni, la scoperta di farmaci e gli studi di biocompatibilità. Inoltre, alcune aziende estrapolano i dati del genoma del cancro per analizzare i trascrittomi e la sintesi delle proteine. Questa è la chiave per trovare frammenti di geni mal posizionati e i loro prodotti, quindi questo aiuta a tracciare le mutazioni, sia quelle conservative che quelle non conservative.
5. Incorporare algoritmi di apprendimento automatico per la modellazione diagnostica
I sistemi sanitari immagazzinano enormi quantità di dati, che le tecnologie moderne hanno reso più facili da utilizzare. I ricercatori biotecnologici/interdisciplinari stanno eseguendo vaste analisi di questi database utilizzando l'alta velocità algoritmi di apprendimento automatico che può scansionare i dati, interagire con i dati e garantire la massima precisione nell'integrazione di grandi database. Gli algoritmi di apprendimento automatico e i sistemi di modellazione dei dati ad alta tecnologia vengono impiegati per integrare i dati relativi al cancro da diverse fonti al fine di ottenere un quadro più ampio dei tumori. Gli strumenti di visualizzazione dei dati genetici stanno facendo le onde nel rilevamento del cancro, consentendo nuovi metodi per controllare la crescita delle cellule tumorali e la morte delle cellule sane. Questo è stato efficacemente messo in uso incorporando il Genetic Modification and Clinical Research Information System, che sono i più efficienti sistemi di gestione dei dati di ricerca open source per visualizzare dati di sequenziamento e screening ad alta produttività.
6. Presentare una maggiore chiarezza sulla prognosi della malattia
Alcuni strumenti software di visualizzazione dei dati sanitari come il CancerLinQ have been developed, which enable physicians and interventionalists to get access to high-quality patient medical data. This is important because it helps understand previous cancer incidences, the progression of the disease and the previous treatment regimen. Doctors are referring to protected medical data of patients using screening tools and using it to recommend studi clinici, suggest personalized treatment protocols and decide the scope of cancer management more effectively. Nowadays, hospitals that report high admission rates for cancer patients have also started using Carte d'identità del tumore che permettono ai loro dati di diventare accessibili a livello centrale per la valutazione clinica.
7. I dati clinici presentano anche risposte valide per le ricadute del cancro
More and more healthcare providers are turning to data analytics tools to understand the reasons why some patients show relapsing tumours while others don’t. Doctors are evaluating large numbers of case reports that help assess patient health risks in a much wider perspective than before. While medical case reports have been in use for a long time, it’s only now that their accessibility and utility have been rising. This means laboratory data are not subjected to standard identification processes but assessed after comparing with other globally reported cases. This makes data the key requirement for personalized treatment.
Cancer is evolving at higher rates than our medicines. Hence, if you’re aiming to defeat, control or prevent it, it’s imperative to channelize the efforts with better target recognition. Big data is that pivotal technology a cancer scientist should apply to improve the quality of research and establish the best results quicker.
_______________________________________
Consultare un ricerca sul cancro specialiso freelance scienziato dei dati su Kolabtree.