Gene therapy is revolutionizing assistenza sanitaria and genomic medicine. The year 2017 demonstrated terapia genica esempi e applicazioni che avevano il potenziale di portare a un migliore trattamento di condizioni mortali, compresi i tumori. Le terapie che coinvolgono la riprogrammazione cellulare hanno ricevuto l'approvazione della FDA per trattare la leucemia a cellule B e la perdita ereditaria della vista e dell'udito. La fraternità di ricerca ha osservato questo come una pietra miliare indomabile poiché i loro decenni di perseveranza per il riconoscimento della ricerca fondamentale stava finalmente pagando.
A slight recall of not too long ago reveals frequent deaths plaguing gene therapy trials that brought investigation research to an uncanny still. Scientific literature of the 1990s alarmingly account the deviations of genetic research from its fundamental principles towards the methods developed to reduce gene manipulation failures. A record shift in the course of gene therapies came by in 2015 when novel technologies such as cell engineering and gene editing showed remarkable successes. Not surprisingly, the biotecnologia e farmaceutica industries caught the attention of this development and invested coercively on these developing biotechnologies.
Gli eroi di questa storia sono gli strumenti di gene-editing (tra cui CRISPR) e la riprogrammazione genetica delle cellule come Kymriah e Yescarta. Questi prodotti di terapia genica, che comprendono Cellule T CAR, established Gene Therapy as the viable alternative to traditional chemotherapy. This can be attributed not just to its high success rates but also to the long-standing scientific belief in the human innate immunity’s ability to fight cancer. Another distinctly appreciable victory for gene therapy was its application in curing sensory conditions, namely inherited vision loss and hearing loss, which got FDA-approval in the finishing week of 2017.
While we witness this vehemently positive shift in perspective, another hundred reports of experimental results await to see the light of the day. There are scientists exploring new cell reprogramming channels, better ways to visualize the DNA framework of disease-causing gene fragments, or creating pluripotent stem cells with specific regenerative capabilities. So, there are a plethora of scientific advances that need to be uncovered to understand how the further course of gene therapy will pan out. Without further ado, here’s taking a look at the greatest gene therapy examples and applications that have set the ball rolling for even bigger scientific breakthroughs.
1. Cellule staminali CAR-Engineered che trattano l'HIV
Gli scienziati del Fred Hutchinson Cancer Research Center Lab dell'Università della California, Los Angeles e Washington hanno coltivato e riprogrammato cellule progenitrici del sangue dal midollo osseo to kill HIV-infected cells. This long-term gene therapy was reported in the PLOS Antigens journal recently, making it the first-of-its-kind application of hemopoietic stem progenitor cells (HSPCs) in CAR-mediated gene therapy. Onward from Kymriah’s success, scientists started probing other potential cellular constructs that can become successful candidates for incorporating novel therapeutic properties. Dr Scott G Kitchen said that reprogrammed HSPCs have a sustained effect, which is why they are favoured over peripheral T-cells with the protective CD4 receptor. The preliminary success of the hypothesis in cells was reported on primates and quite obviously, all we can do is wait for the same to be translated in humans.
2. Cellule Killer Naturali ingegnerizzate contro il linfoma di Hodgkin
Come per le cellule T citotossiche, gli scienziati sono curioso sulle capacità delle cellule Natural Killer che esprimono una citotossicità adattativa anticorpo-mediata (ADCCs) contro un vasto spettro di antigeni. Le cellule Natural Killer hanno una minore possibilità di vincere sulle cellule T a causa della loro elevata attività in prossimità delle cellule tumorali. Questo è abbastanza diverso dalle cellule T che inducono cambiamenti necrotici nelle cellule tumorali attraverso molecole mirate. Pertanto, cellule killer naturali need a shorter time-frame to induce the same effect as CAR-mediated T cells. This potentially niche therapy is now the focal point of Fate Therapeutics’ current research for which the company has announced a collaboration with University of California, San Diego. So, it seems that gene therapies with re-engineered natural killer cells would figure in the category of targetted genomic treatments soon!
3. Microcarriers dissolvibili Corning a base di acido pectico per le terapie cellulari
Le terapie cellulari richiedono un elevato throughput di cellule ridisegnate che possono essere applicate solo se dissociate. La forma convenzionale, cioè le cellule come matrice solida immobilizzata, disturba il sistema terapeutico a causa della sua contaminazione con zuccheri indesiderati e presenta ulteriori sfide di lavorazione a valle. Le matrici immobilizzate di cellule su microcarriers simili a perle sono importanti perché formano le strutture rudimentali su cui vengono espressi anticorpi monoclonali, proteine, recettori di segnalazione cellulare o marcatori di riconoscimento. Le cellule che crescono su microcarriers diventano quasi inseparabili soprattutto dopo che si sono espanse e sviluppate al loro pieno potenziale. I microcarriers dissolvibili aumentano la loro efficacia riducendo le tossicità, le contaminazioni e aumentando l'omogeneità in modo che le cellule possano essere prontamente assorbite nel corpo e svolgere la loro azione terapeutica designata.
4. Sviluppo di sistemi di espansione cellulare per cellule ematiche e immunitarie geneticamente modificate
Leukapheresis was, until this day, the process of choice for harvesting and growing T cells or B cells for delivering cell therapies into patients who need them. However, scaling their number for increasing the efficiency has been the immediate concern for R&D. High contamination rates accompany leukapheresis and then the underlying problem of manual-handling remained. This prompted Bioprocessing researcher, Andrew Fesnak, M.D., to incorporate large-scale, automated, closed cell expansion systems. These cell processing units have done away with manual intervention, risks of contamination and longer time periods using a well established ‘enrichment’ technology. Risparmiatore di cellule e Sepax sono le due nuove unità automatizzate di espansione delle cellule terapeutiche di GE Healthcareche competono strettamente con Fabbrica di celle (R) di Thermo Fisher Scientific in termini di scalabilità e precisione.
5. Lo strumento AI di Microsoft per la messa a punto di CRISPR
CRISPR’s potential to change/cleave or improve gene expressions has made it a worldwide phenomenon and with the tech giant Microsoft’s interests growing immensely in healthcare, the path for CRISPR’s applicability only seems to get wider and brighter. Computational experts from Microsoft collaborated with multiple universities across the US and released Elevazione – an Intelligenza artificiale tool that alerts CRISPR su eventuali effetti indesiderati che possono accadere mentre agisce sui geni. Il team di ricerca che ha portato alla luce questo strumento di previsione di alta precisione appartiene a illustri istituzioni accademiche, tra cui il Broad Institute del MIT e Harvard, la Harvard Medical School e il Massachusetts General Hospital. Uno strumento ausiliario chiamato Azimuth accompagna Elevation, entrambi i quali sono accessibili online come software open source basato su cloud end-to-end per la progettazione di guide.
6. Esplorare le nucleasi Zinc-Finger contro la sindrome di Hunter
When CRISPR hit the headlines in mid-2015, there were immense conversations among biologists about the prospects of other genome editing modules. While some dismissed them off as inefficient, others just regained focus on the increased utility of TALENs and ZFNs. CRISPR may have crossed the barriers of investigation and entered into the clinical circuit, but that doesn’t take away the potential that Zinc Finger Nucleases and Transcriptor activator-like effector nucleases hold. Sangamo Therapeutics recently released a statement regarding its preliminary success in the ongoing Phase I/II clinical trial with a ZFN-mediated treatment for 9 patients with a genetic condition. 2018 is a crucial year for this investigational trial as a maximum of the patients are due for receiving the ZFN-mediated gene therapy. A positive clinical report in this clinical trial would mean that Zinc Finger Nucleases can be extensively used a parallel gene-editing tool alongside CRISPR in the future.
7. Terapia genica basata su cellule staminali allogeniche per la malattia di Crohn
TiGenix and Takeda – both biotecnologia companies in Belgium and Japan, respectively – have successfully displayed the treatment of fistole perianali that are serious manifestations of Crohn’s disease. Being an autoimmune disease concerning the large and small intestine, Crohn’s patients require specialized diets and medicines. Cx601 – the gene therapy utilizing specialized adipose tissue cell constructs – was able to reduce host cell deduction and stimulate immunomodulatory effects of T cells. This unique expression of adipose-based stem cells enabled the generation of normal regulatory T cells that prevented the formation of perianal fistulas. Perianal fistulas present complex medical challenges and have devastating effects on patients, including death or severe gastrointestinal bleeding. Since perianal fistulas are commonly developed in patients with Crohn’s disease, this allogenic (from donors) genetic treatment is easily the best trial candidate for lowering risks associated with Crohn’s.
Genomic treatment seems to have attained a revolutionary status in the Biotech and Pharma arena, and the path currently steeps upward. From downstream processing to lab-on-a-chip devices, every single aspect of biotech sviluppo del prodotto has been touched by genomic engineering. This makes 2018 only getting more exciting with every passing day, so it’s best to set our eyes forward and only forward!
__________________
Hai bisogno dell'aiuto di uno scienziato per il tuo progetto di ricerca? Assumi uno scienziato o ricercatore freelance su Kolabtree.