Le blog de Kolabtree

7 façons dont la recherche sur le cancer peut bénéficier du Big Data

Data is ubiquitous in soins de santé—from hospitals, laboratories and recherche centres to surveillance systems, data makes up an indiscriminate part of healthcare systems. In fact, there is a myriad of types of data in biosciences research collected through clinical research or generated by genome sequencing or computational drug modelling. Recherche sur le cancer in particular benefits from the applications of big data and analytics. Cancer screening programs initiate rich repertoires of imaging and laboratory data, which require in-depth analysis and repeated testing in order for real value to be derived from it. Repeated testing and analyse des données enable clinical researchers to develop better drugs, understand their attributes in vivo et produire de nouveaux types de médicaments pour lutter contre le cancer.

It’s no secret that données massives est considérée comme la méthode la plus sûre pour briser la complexité du cancer. La volonté d'établir de nouveaux mécanismes pour traiter le cancer a conduit les entreprises à étudier les outils de visualisation et d'analyse des données. La capture, la collecte, le stockage et l'analyse des données provenant des cellules cancéreuses est un tout nouveau jeu de balle dans lequel IA bienveillante, 10X Génomique, Médecine Insilico et NuMedii ont franchi leurs premiers jalons. In fact, 10X Genomics has gone the extra mile to provide whole genome sequencing, exome sequencing and single cell transcriptome analysis services that vividly indicate cancer-prone gene sequences in the DNA, mRNA and polypeptide chains, respectively. Few others are utilizing broader data frameworks, novel screening mechanisms and high definition data filtering algorithms to test cancer drugs on a wide range of cellular environments.

Big data’s applicability in cancer diagnosis, experimentation and management is being hailed as the vital step towards next-level cancer research. Here are 7 ways big data is impacting cancer research.

1. Séquençage des génomes du cancer chez l'homme

Chaque cellule de notre corps possède le même nombre de chromosomes et à peu près le même volume d'ADN. Mais les cellules cancéreuses présentent des aberrations distinctes au niveau du contenu chromosomique et de la croissance, qui, si elles sont soumises à une visualisation in silico, peuvent être utilisées pour exploiter les informations jusqu'au niveau de l'ADN. Ces études de séquençage peuvent aider les biologistes cellulaires, les bioinformaticiens, les biologistes moléculaires et les nanobiotechnologues à mettre au point de meilleures méthodes pour éliminer les anomalies chromosomiques, ce qui peut déboucher sur d'éventuelles voies thérapeutiques.

2. Séquençage à haut débit d'échantillons de patients

We’re in the age when personalized medicine is becoming commonplace in healthcare and cancer is the biggest scope for that progress. This push towards personalized medicine has put the onus on computational biology, the branch of biology that makes healthcare as sophisticated as it is viewed today. Professeur Olivier Elemento, a Computational Medicine expert at the Cornell University highlights that as cancer cells are always changing, evolving and adapting to human environments, quicker next-generation technologies are more necessary now than ever to uncover a tumour’s genetic makeup. And the effort doesn’t just end there, mutation sequences have to be identified, segmented and processed with regards to the gene expressed.

3. Séquençage des génomes d'autres organismes

Le premier génome à avoir été séquencé est celui du Escherichia coliun organisme unicellulaire. Ensuite, les génomes des plantes comme Arabidopsis thaliana and non-vertebrate worms, reptiles and rodents were sequenced, With every degree of complexity that these organisms carried, genome sequencing gained bigger in terms of the understanding of a single cell’s potential to control, sensitize or ward off cancerous cells. It also presented working theories behind triggers of cancer. Now, researchers are analysing real-time data from mouse/chicken hamster ovary cancer cell lines to augment or improve cancer detection methods, along with increasing the accuracies of presently available screening tests.

4. Analyse du transcriptome pour un meilleur suivi du cancer

Au cours de la dernière décennie, de grandes bases de données de dépistage et de données expérimentales ont été générées uniquement lors d'études liées au cancer. Cela a ajouté une valeur cruciale au maintien des gènes marqueurs qui sont maintenant les outils de première main pour la surveillance des oncogènes, la découverte de médicaments et les études de biocompatibilité. En outre, certaines entreprises extrapolent les données du génome du cancer pour analyser les transcriptomes et la synthèse des protéines. C'est la clé pour trouver des fragments de gènes mal placés et leurs produits, ce qui permet de suivre les mutations, qu'elles soient conservatrices ou non.

5. Incorporation d'algorithmes d'apprentissage automatique pour la modélisation du diagnostic

Les systèmes de soins de santé stockent d'énormes quantités de données, que les technologies modernes permettent d'exploiter plus facilement. Les chercheurs en biotechnologie et les chercheurs interdisciplinaires effectuent de vastes analyses de ces bases de données à l'aide de technologies à haut débit. algorithmes d'apprentissage automatique qui peuvent analyser les données, interagir avec elles et garantir la plus grande précision dans l'intégration de grandes bases de données. Des algorithmes d'apprentissage automatique et des systèmes de modélisation de données de haute technologie sont utilisés pour intégrer des données relatives au cancer provenant de différentes sources afin d'obtenir une image plus complète des tumeurs. Les outils de visualisation des données génétiques font des vagues dans la détection du cancer en permettant de nouvelles méthodes de contrôle de la croissance des cellules cancéreuses et de la mort des cellules saines. Ces outils ont été mis en œuvre de manière efficace en intégrant le système d'information sur la modification génétique et la recherche clinique, qui sont les systèmes de gestion des données de recherche à source ouverte les plus efficaces pour visualiser les données de séquençage et de dépistage à haut débit.

6. Présenter une plus grande clarté sur le pronostic de la maladie

Certains outils logiciels de visualisation des données sur les soins de santé, tels que l'application CancerLinQ have been developed, which enable physicians and interventionalists to get access to high-quality patient medical data. This is important because it helps understand previous cancer incidences, the progression of the disease and the previous treatment regimen. Doctors are referring to protected medical data of patients using screening tools and using it to recommend les essais cliniques, suggest personalized treatment protocols and decide the scope of cancer management more effectively. Nowadays, hospitals that report high admission rates for cancer patients have also started using Cartes d'identification des tumeurs qui permettent à leurs données d'être accessibles de manière centralisée pour une évaluation clinique.

7. Les données cliniques apportent également des réponses viables aux rechutes du cancer

More and more healthcare providers are turning to data analytics tools to understand the reasons why some patients show relapsing tumours while others don’t. Doctors are evaluating large numbers of case reports that help assess patient health risks in a much wider perspective than before. While medical case reports have been in use for a long time, it’s only now that their accessibility and utility have been rising. This means laboratory data are not subjected to standard identification processes but assessed after comparing with other globally reported cases. This makes data the key requirement for personalized treatment.

Cancer is evolving at higher rates than our medicines. Hence, if you’re aiming to defeat, control or prevent it, it’s imperative to channelize the efforts with better target recognition. Big data is that pivotal technology a cancer scientist should apply to improve the quality of research and establish the best results quicker.

_______________________________________

Consultez un Spécialiste de la recherche sur le cancert ou freelance spécialiste des données sur Kolabtree. 


Kolabtree helps businesses worldwide hire freelance scientists and industry experts on demand. Our freelancers have helped companies publish research papers, develop products, analyze data, and more. It only takes a minute to tell us what you need done and get quotes from experts for free.


Unlock Corporate Benefits

• Secure Payment Assistance
• Onboarding Support
• Dedicated Account Manager

Sign up with your professional email to avail special advances offered against purchase orders, seamless multi-channel payments, and extended support for agreements.


Quitter la version mobile